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In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown
fouling-layer profile on the inner wall of a duct system using simulated temperature measurements
taken on the duct wall. The temperature data obtained from the direct problem are used to simulate the
exact temperature measurements. Results show that an excellent estimation on the fouling-layer profile
can be obtained for the case without separation bubble. The predictive accuracy, however, slightly
deteriorates when there is a separation bubble in the duct flow. The technique presented in this study
can be used in a warning system to call for maintenance when the thickness of fouling exceeds a pre-
defined criterion.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Inverse methods have recently been applied to various engi-
neering problems. A great number of applications of inverse
methods are continuously being proposed for different technical
fields [1–3]. Despite the ill-posed nature of inverse problems, the
solutions of these problems are important for theoretical studies and
measurement techniques, especially in cases where measurement is
difficult, instruments for measurement are expensive, or the
measurement process to directly measure certain physical quanti-
ties is complicated. Under these circumstances, a satisfactory esti-
mated result can be easily obtained by using a numerical method
and some simple instruments, for examples, using thermocouples to
measure the inner wall temperatures of burners, the temperatures
of cutting tool tips, and so on. Among those different engineering
applications, one of the most important applications is on a heat
exchanger, a crucial element found in many engineering devices. A
fundamental characteristic of a heat exchanger is the phenomenon
of conjugate heat transfer which involves an interaction between
the conduction of the solid wall material and the convection of the
fluid flowing over that wall. The problems of conjugate heat transfer
are very important and have already been examined by a number of
researchers [4–6]. Many other important engineering devices also
involve conjugate heat transfer problems such as flows over fins. In
en).
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this case, valuable design information can be obtained by simulta-
neously analyzing the conduction in the fin and the convection in the
fluid. For conjugate heat transfer in thick-walled pipes or ducts, the
boundary conditions imposed at the external surface are different
from those which exist at the internal surface. In this situation, the
thermal boundary conditions existing at the internal surface are not
known a priori, and hence, the energy equations must be solved
under the conditions of temperature and heat flux continuity.

One of the very interesting topics of inverse problems, attracting
a lot of attention in recent years, is the technique of inverse
geometry problem (or shape identification problem). The applica-
tions of shape identification problem have been widely used in
various industrial fields, for examples, the prediction of frost
thickness in refrigeration systems, the prediction of the geometry
of blast furnace inner wall, the prediction of crevice and pitting in
furnace wall, and the optimization of geometry [7]. In the past,
there have been many researchers devoted to the study of inverse
geometry problems using a variety of numerical methods. Huang
and Chen [8] developed a modified model to estimate the outer
boundary configurations of a multiple region domain without
confining the search directions. Park and Shin applied the coordi-
nate transformation technique with the adjoint variable method to
a shape identification problem in determining unknown boundary
configuration for heat conduction systems [9] and natural
convection systems [10]. Divo et al. [11] used the genetic algorithm
and a singular superposition technique to detect the unknown
sphere cavity in a 3D inverse geometry problem. Kwag et al. [12]
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Fig. 1. Schematic of the configuration of the duct system.

Nomenclature

H1 the height of the inner wall in the duct (m)
H2 the height of the outer wall in the duct (m)
h convection heat transfer coefficient (W m�2 K�1)
J functional
J0 gradient of functional
k thermal conductivity (W m�1 K�1)
L length of the duct (m)
M total number of measuring positions
p direction of descent
T temperature (K)
Tin inlet temperature (K)
TN ambient temperature (K)
u fluid velocity in the x-direction (m s�1)
v fluid velocity in the y-direction (m s�1)
x spatial coordinate (m)
Y measurement temperature (K)

y spatial coordinate (m)
D small variation quality
a thermal diffusivity (m2 s�1)
b step size
g conjugate coefficient
h very small value
l variable used in adjoint problem
n fluid kinematic viscosity n ¼ m=r (m2 s�1)

Superscripts
K iterative number

Subscripts
s1 for fouling layer
s2 for duct wall material
f fluid
s solid
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followed a new algorithm to estimate the phase front motion of ice
in a thermal storage system. Recently, Su and Chen [13] utilized the
reversed matrix method with both the linear least-squares error
method and the concept of virtual area for a shape identification
problem to identify the geometry of inner wall in a furnace. Among
those studies, it can be noted that there have been only very few on
shape identification problems involving conjugate heat transfer
which is commonly encountered in heat exchanger problems.

The performance of a heat exchanger usually deteriorates with
time as a result of the accumulation of deposits on heat transfer
surfaces. The layer of deposit (fouling) represents additional
thermal resistance to heat transfer and causes the heat transfer rate
of the heat exchanger to drop. In addition, the fouling could narrow
the flow channel and result in an increase in pumping power, which
in turn consumes more energy. Since fouling is often formed on the
inner wall of a heat exchanger duct, it is difficult to obtain the exact
configuration of the fouling layer, especially if the duct is very long.
The objective of the present inverse geometry problem is to esti-
mate the unknown irregular fouling profile on the inner wall of
a duct system, which involves conjugate heat transfer, based on the
simulated temperature measurements taken within the duct wall.
This technique can be used in a warning system to call for main-
tenance when the thickness of fouling exceeds a pre-defined
criterion. In the analysis, we assume the variation in the slopes of
the fouling-layer profile is large, thus the duct flow will never be
fully developed, and there is a possibility of forming some localized
separation bubbles. Therefore, the flow field cannot be specified but
needs to be solved by the Navier-Stokes equations, which have to be
incorporated into the inverse procedure. In this, the Navier-Stokes
equations are coupled with the inverse algorithm through the
perturbation of fouling-layer profile. That is, as the fouling-layer
profile is changed after an inverse iteration, a new flow field needs
to be solved by the Navier-Stokes equations because the boundary
of the flow domain also changed. Then the updated flow field
affects the temperature distributions both in solid and fluid mate-
rials via the mechanism of conjugate heat transfer, hence altering
the course of the inverse algorithm and, in turn, resulting in yet
another new fouling-layer profile. The iteration cycle then goes on
and on until a convergence criterion is met. Theoretically, the
current inverse method is able to cope with arbitrary fouling
profiles. Here, we employ the conjugate gradient method (CGM)
[14–16] and the discrepancy principle [17] to the inverse geometry
problem to determine the fouling-layer configuration in the duct
system. The conjugate gradient method with an adjoint equation,
also called Alifanov’s iterative regularization method, belongs to
a class of iterative regularization techniques, which mean the reg-
ularization procedure is performed during the iterative processes,
thus the determination of optimal regularization conditions is not
needed. On the other hand, the discrepancy principle is used to
terminate the iteration process in the conjugate gradient method.

2. Analysis

2.1. Direct problem

To illustrate the methodology of developing expressions for use
in determining the unknown irregular fouling profile f(x), on the
inner wall of a duct flow, the following steady-state heat transfer
problem is considered. Fig. 1 shows a schematic representation of
the considered duct flow. A duct is assumed symmetrical to the
centerline. The length of the duct is L, with half heights of the inner
and outer walls H1 and H2, respectively. The fluid temperature at
the inlet is Tin(y). After a period of operation, a layer of fouling is
assumed built up on the duct’s inner wall and the profile f(x) of the
fouling layer is assumed unknown. Then, the mathematical
formulation of this steady-state forced convection heat transfer
problem, covering the fouling layer, solid duct, and fluid domains,
respectively, can be expressed as [18]:

Navier-Stokes equations and boundary conditions:

vu
vx
þ vv

vy
¼ 0; (1a)
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(1d)

vu
vx
¼ vv

vx
¼ 0; at x ¼ L and 0 � y � f ðxÞ; (1e)
vu
vy
¼ 0 and v ¼ 0; at y ¼ 0 and 0 � x � L; (1f)

u ¼ v ¼ 0; at y ¼ f ðxÞ and 0 � x � L: (1g)

Energy equations and boundary conditions:
In the fluid region:

u
vTf

vx
þ v

vTf

vy
¼ af

 
v2Tf

vx2 þ
v2Tf

vy2

!
; (2a)

Tf ¼ TinðyÞ; at x ¼ 0 and 0 � y � f ðxÞ; (2b)

vTf

vx
¼ 0; at x ¼ L and 0 � y � f ðxÞ; (2c)

vTf

vy
¼ 0; at y ¼ 0 and 0 � x � L: (2d)

In the fouling region:

v2Ts1

vx2 þ
v2Ts1

vy2 ¼ 0; (3a)

vTs1

vx
¼ 0; at x ¼ 0 and f ðxÞ � y � H1; (3b)

vTs1

vx
¼ 0; at x ¼ L and f ðxÞ � y � H1: (3c)

In the pipe wall region:

v2Ts2

vx2 þ
v2Ts2

vy2 ¼ 0; (4a)

vTs2

vx
¼ 0; at x ¼ 0 and H1 � y � H2; (4b)

vTs2

vx
¼ 0; at x ¼ L and H1 � y � H2; (4c)

�ks2
vTs2

vy
¼ hðTs2 � TNÞ; at y ¼ H2 and 0 � x � L: (4d)

At the interface between the regions of fluid and fouling:

Tf ¼ Ts1; at y ¼ f ðxÞ and 0 � x � L; (5a)
kf
vTf

vn
¼ ks1

vTs1

vn
; at y ¼ f ðxÞ and 0 � x � L: (5b)

At the interface between the regions of fouling and pipe wall:

Ts1 ¼ Ts2; at y ¼ H1 and 0 � x � L; (6a)

ks1
vTs1

vn
¼ ks2

vTs2

vn
; at y ¼ H1 and 0 � x � L; (6b)

where k is the thermal conductivity, and uav is the average velocity.
The direct problem considered here is concerned with the
determination of the medium temperature when the irregular
fouling-layer configuration f(x), thermal properties, and boundary
conditions are known.

2.2. Inverse problem

For the inverse problem, the irregular fouling-layer configura-
tion f(x) is regarded as being unknown, while everything else in
Eqs. (1)–(6) is known. In addition, temperature readings taken at
some appropriate locations of the pipe wall are considered avail-
able. Referring to Fig. 1, we assume that M sensors installed along
y¼ ym are used to record the temperature information to identify
the fouling-layer configuration in the inverse calculation. The
objective of the inverse analysis is to predict the unknown irregular
fouling-layer profile f(x) from knowledge of these temperature
readings. Let the measured temperature at the measurement
positions be denoted by Y(xi, ym), i¼ 1 w M, where M represents the
number of thermocouples. Then this inverse problem can be stated
as follows: by utilizing the above mentioned measured tempera-
ture data Y(xi, ym), the unknown fouling-layer configuration f(x) is
to be estimated over the specified domain.

The solution of the present inverse problem is to be obtained in
such a way that the following functional is minimized:

J½f ðxÞ� ¼
XM
i¼1

½Ts2ðxi; ymÞ � Yðxi; ymÞ�2; (7)

where Ts2(xi, ym) is the estimated (or computed) temperature at the
measurement location (x, y)¼ (xi, ym). These quantities are deter-
mined from the solution of the direct problem given previously by
using an estimated fk(x) for the exact f(x). Here fk(x) denotes the
estimated quantities of f(x) at the Kth iteration. In addition, in order
to develop expressions for the determination of the unknown f(x),
a ‘‘sensitivity problem’’ and an ‘‘adjoint problem’’ are constructed
as described below.

2.3. Sensitivity problem

The sensitivity problem is obtained from the original direct
problem defined by Eqs. (2)–(6) in the following manner: It is
assumed that when f(x) undergoes a variation Df(x), T(x, y) is
perturbed by TþDT. Then replacing in the direct problem f by
fþDf and T by TþDT, subtracting from the resulting expressions
the direct problem, and neglecting the second-order terms, the
following sensitivity problem for the sensitivity function DT can be
obtained.

In the fluid region

u
vDTf

vx
þ v

vDTf

vy
¼ af

 
v2DTf

vx2 þ
v2DTf

vy2

!
; (8a)
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DTf ¼ 0 at x ¼ 0 and 0 � y � f ðxÞ; (8b)
vDTf

vx
¼ 0 at x ¼ L and 0 � y � f ðxÞ; (8c)

vDTf

vy
¼ 0; at y ¼ 0 and 0 � x � L: (8d)

In the fouling region:

v2DTs1

vx2 þ v2DTs1

vy2 ¼ 0; (9a)

vDTs1

vx
¼ 0 at x ¼ 0 and f ðxÞ � y � H1; (9b)

vDTs1

vx
¼ 0 at x ¼ L and f ðxÞ � y � H1: (9c)

In the pipe wall region:

v2DTs2

vx2 þ v2DTs2

vy2 ¼ 0; (10a)

vDTs2

vx
¼ 0 at x ¼ 0 and H1 � y � H2; (10b)

vDTs2

vx
¼ 0 at x ¼ L and H1 � y � H2; (10c)

�ks2
vDTs2

vy
¼ hDTs2; at y ¼ H2 and 0 � x � L: (10d)

At the interface between the regions of fluid and fouling:

DTf ¼ DTs1; at y ¼ f ðxÞ and 0 � x � L; (11a)

kf
vDTf

vn
¼ ks1

vDTs1

vn
; at y ¼ f ðxÞ and 0 � x � L: (11b)

At the interface between the regions of fouling and pipe wall:

DTs1 ¼ DTs2; at y ¼ H1 and 0 � x � L; (12a)
ks1
vDTs1

vy
¼ ks2

vDTs2

vy
; at y ¼ H1 and 0 � x � L: (12b)

The sensitivity problem of Eqs. (8)–(12) can be solved by the same
method as the direct problem of Eqs. (2)–(6).

2.4. Adjoint problem and gradient equation

To obtain the adjoint problem, Eqs. (2a), (3a), and (4a) are
multiplied by the Lagrange multipliers (or adjoint functions) lf(x,y),
ls1(x,y) and ls2(x,y), respectively, and the resulting expressions are
integrated over the correspondent space domains. Then the results
are added to the right hand side of Eq. (7) to yield the following
expression for the functional J[f(x)]:

J½f ðxÞ� ¼
XM
i¼1

½Ts2ðxi;ymÞ�Yðxi;ymÞ�2þ
Zf ðxÞ

y¼0
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vy2

!#
dxdyþ
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y¼f ðxÞ

ZL
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#
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#
dxdy:

(13)

The variation DJ is obtained by perturbing f by Df and T by
&DeltaT; in Eq. (13). Subtracting from the resulting expression the
original Eq. (13) and neglecting the second-order terms, we thus find

DJ½f ðxÞ� ¼
ZH2

y¼H1

Z L

x¼0

2½Ts2ðx; yÞ
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dxdy: (14)

where d is the Dirac function. Utilizing the boundary conditions of
the sensitivity problem, we can integrate the second to fourth
double integral terms in Eq. (14) by parts. The vanishing of the
integrands containing DT leads to the following adjoint problem for
the determination of lf(x,y), ls1(x,y) and ls2(x,y),:

In the fluid region:

u
vlf

vx
þ v

vlf

vy
þ af

 
v2lf
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v2lf

vy2

!
¼ 0; (15a)

lf ¼ 0; at x ¼ 0 and 0 � y � f ðxÞ; (15b)

af
vlf

vx
þ ulf ¼ 0; at x ¼ L and 0 � y � f ðxÞ; (15c)
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vlf

vy
¼ 0; at y ¼ 0 and 0 � x � L; (15d)

In the fouling region:

v2ls1

vx2 þ
v2ls1

vy2 ¼ 0 ; (16a)

vls1

vx
¼ 0; at x ¼ 0 and f ðxÞ � y � H1; (16b)

vls1

vx
¼ 0 at x ¼ L and f ðxÞ � y � H1: (16c)

In the pipe wall region:

v2ls2

vx2 þ
v2ls2

vy2 þ2½Ts2ðx;yÞ�Yðx;yÞ�$dðx�xiÞ$dðy�ymÞ¼0; (17a)
vls2

vx
¼ 0 at x ¼ 0 and H1 � y � H2; (17b)

vls2

vx
¼ 0 at x ¼ L and H1 � y � H2; (17c)

�ks2
vls2

vy
¼ hls2; at y ¼ H2 and 0 � x � L: (17d)

At the interface between the regions of fluid and fouling:

ks1lf ¼ kf ls1; at y ¼ f ðxÞ and 0 � x � L; (18a)

ks1
vlf

vn
¼ kf

vls1

vn
; at y ¼ f ðxÞ and 0 � x � L: (18b)

At the interface between the regions of fouling and pipe wall:

ks2ls1 ¼ ks1ls2 at y ¼ H1 and 0 � x � L; (19a)
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vls1

vy
¼ vls2

vy
; at y ¼ H1 and 0 � x � L: (19b)

Then the adjoint problem can be solved by the same method as
the direct problem.

Finally the following integral term is left:

DJ ¼
Z L

x ¼ 0

�½vTs1

vn
vls1

vn
�y¼f ðxÞ$Df ðxÞdx: (20)

From the definition used in the reference [14], we have
DJ ¼
Z L

x ¼ 0

J
0 ðxÞDf ðxÞdx; (21)

where J0(x) is the gradient of the functional J[f(x)]. A comparison of
Eqs. (20) and (21) leads to the following form:

J
0 ðxÞ ¼ �

�
vTs1

vn
vls1

vn

�
y¼f ðxÞ

: (22)

2.5. Conjugate gradient method for minimization

Assuming the functions of T (x,y), DT (x,y), l (x,y) and J0 (x) are
available at the Kth iteration, the iteration process based on the
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conjugate gradient method is now used for the estimation of f(x).
By minimizing the above functional J[f(x)], the function f(x) can be
evaluated at the (Kþ 1)th step by

f Kþ1ðxÞ ¼ f KðxÞ � bKpKðxÞ; K ¼ 0;1;2;.; (23)

where bK is the search step size in going from iteration K to iteration
Kþ 1, and pK is the direction of descent (i.e., search direction)
given by

pKðxÞ ¼ J0KðxÞ þ gKpK�1ðxÞ; (24)

which is conjugation of the gradient direction J0K (x) at iteration K
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and the direction of descent pK�1 (x)at iteration K� 1. The conjugate
coefficient gK is determined from

gK ¼
PM

i¼1

h
J0KðxÞdðx� xiÞ

i2

PM
i¼1

h
J0K�1ðxÞdðx� xiÞ

i2 with g0 ¼ 0: (25)

The convergence of the above iterative procedure in minimizing
the functional J is proved in the reference [14]. To perform the
iterations according to Eq. (23), we need to compute the step size bK

and the gradient of the functional J0K(x).
The functional J[fKþ1(x)] for iteration Kþ 1 is obtained by

rewriting Eq. (7) as

J
h
f Kþ1ðxÞ

i
¼
XM
i¼1

h
Ts2ðf K � bK pKÞ � Yðxi; ymÞ

i2
; (26)



x (cm)

f
(
x
)
 
(
c
m

)

0 2 4 6 8
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

exact
10 iteration
80 iteration
converged

Fig. 7. Comparison of different intermediate inverse fouling-layer profiles for case 3.

W.-L. Chen, Y.-C. Yang / International Journal of Thermal Sciences 49 (2010) 86–9894
where we replace fKþ1 by the expression given by Eq. (23). If
temperature Ts2 (fK� bKpK) is linearized by a Taylor expansion, Eq.
(26) takes the form

J
h
f Kþ1ðxÞ

i
¼
XM
i¼1

h
Ts2ðf KÞ � bKDTs2ðpKÞ � Yðxi; ymÞ

i2
; (27)

where Ts2(fK) is the solution of the direct problem at (x, y)¼ (xi, ym)
by using estimated fK (x) for exact f(x). The sensitivity function DTs2

(pK) is taken as the solution of Eqs. (8)–(12) at the measured posi-
tion (x, y)¼ (xi, ym) by letting Df(x)¼pK(x)Df ðxÞ ¼ pKðxÞ [19]. The
search step size bK is determined by minimizing the functional
given by Eq. (27) with respect to bK. After rearrangement, the
following expression is obtained:

bK ¼
PM

i¼1 DTs2
�
pK
�h

Ts2

�
f K
	
� Yðxi; ymÞ

i
PM

i¼1


DTs2ðpKÞ

�2 : (28)

2.6. Stopping criterion

If the problem contains no measurement errors, the conver-
gence condition for the minimization of the criterion is:

J
�

f Kþ1
	
< h; (29)

where h is a small specified number, can be used as the stopping
criterion. However, the observed temperature data contains
measurement errors; as a result, the inverse solution will tend to
approach the perturbed input data, and the solution will exhibit
oscillatory behavior as the number of iteration is increased [20].
Computational experience has shown that it is advisable to use the
discrepancy principle [17] for terminating the iteration process in
the conjugate gradient method. AssumingTs2ðxi; ymÞ � Yðxi; ymÞys,
the stopping criteria h by the discrepancy principle can be obtained
from Eq. (7) as

h ¼ Ms2; (30)

where s is the standard deviation of the measurement error. Then
the stopping criterion is given by Eq. (29) with h determined from
Eq. (30).
2.7. Computational procedures

The computational procedure for the solution of this inverse
problem may be summarized as follows:

Suppose fK(x) is available at iteration K.

Step 1 Solve the flow field given by Eqs. (1a)–(1g).
Step 2 Solve the direct problem given by Eqs. (2)–(6) for Tf(x,y),

Ts1(x,y) and Ts2(x,y), respectively.
Step 3 Examine the stopping criterion given by Eq. (29) with h

given by Eq. (30). Continue if not satisfied.
Step 4 Solve the adjoint problem given by Eqs. (15)–(19) for lf(x,y),

ls1(x,y) and ls2(x,y), respectively.
Step 5 Compute the gradient of the functional J0(x) from Eq. (22).
Step 6 Compute the conjugate coefficient gK and direction of

decent pK(x) from Eqs. (25) and (24), respectively.
Step 7 Set Df ðxÞ ¼ �pKðxÞ and solve the sensitivity problem given

by Eqs. (8)–(12) for DTf ðx; yÞ;DTs1ðx; yÞ; and DTs2ðx; yÞ;
respectively.

Step 8 Compute the search step size bK from Eq. (28).
Step 9 Compute the new estimation for fKþ1(x) from Eq. (23) and

return to Step 1.
3. Results and discussion

The objective of this article is to validate the present approach
when used in estimating the irregular profile of the fouling layer
built on a duct’s internal wall accurately without prior information
on the functional form of the unknown profile, a procedure called
function estimation. In the present study, we assume that the
material of the duct wall is steel, and the duct fluid is water. Then
the material properties, geometric parameters, and thermal
parameters of the system are listed as follows:

a¼ 1.4�10�7 m2 s�1, n¼ 8.9�10�7 m2 s�1, kf¼ 0.5 W m�1 K�1,
ks1¼2.0 W m�1 K�1, ks2¼ 42.0 W m�1 K�1,
H1¼0.0125 m, H2¼ 0.013 m, L¼ 0.15 m, Tin(y)¼ T0¼ constant,
TN� T0¼ 20 K, h¼ 100 W m�2 K�1.

The numerical procedure in this paper is based on the
unstructured-mesh, fully collocated, finite-volume code,
‘USTREAM’ developed by the corresponding author. This is the
descendent of the structured-mesh, multi-block code of ‘STREAM’
[21]. Since the problem is assumed to be symmetrical to the
centerline of the duct, only the upper half of the domain is solved
for the inverse problem. One of the numerical challenges of the
current problem is that the fouling-layer profile, i.e. the solid/fluid
interface, changes iteration after iteration. This affects the
boundary profiles of both the fouling layer and the duct flow
regions. As a result, the meshes for both regions need to be re-built
after each inverse iteration. Therefore, a mesh reconstruction
algorithm has been incorporated into the code to re-build the part
of mesh covering the fouling layer and the duct flow (the mesh for
solid duct wall is untouched). In order to test the accuracy of the
present inverse analysis, we consider the simulated exact profile of
the fouling layer, f(x), as:

f ðxÞ ¼ 0:012� 0:1x m; 0&x < 0:025 m;
f ðxÞ ¼ 0:0095� 0:1ðx� 0:025Þm; 0:025&x < 0:075 m;
f ðxÞ ¼ 0:012� 0:1ðx� 0:075Þm; 0:075&x < 0:1 m;
f ðxÞ ¼ 0:01þ 0:05ðx� 0:1Þm; 0:1&x&0:15 m:

(31)

As seen, Eq. (31) is a piecewise linear function which defines
a W-shaped profile as shown in Fig. 2. The linear function has three



X

Y

Z

X

Y

Z

a

b
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corners at x¼ 0.025, 0.05, and 0.1 m, respectively, which might be
difficult for the inverse method to approximate. In addition, the
profile creates two contraction and two diffusion sections within
the duct and a cavity between the two peaks of the fouling layer.
Under certain flow conditions, adverse pressure gradient acting on
the first diffusion section can result in a separation bubble trapped
within the cavity of the fouling layer, making the fluid flow more
complicated. The complete mesh of the direct problem is given in
Fig. 2, where the y-coordinate has been amplified 6 times to allow
the profile of the fouling layer to be seen clearer. This mesh consists
of 9600 cells where there are 160 and 60 cells allocated in x- and y-
directions, respectively. It is also noticeable that the mesh has been
compressed towards the fouling-layer/fluid interface in y-direction
to increase the numerical resolution at the adjacent regions of the
interface and towards the cavity in x-direction to better resolve the
separation bubble if there is any. The mesh has been selected for its
cell density being dense enough to return a grid-independent
solution after a mesh-density test.

Here, three cases with different inlet velocities and slightly
different fouling-layer geometries f(x)are calculated to produce
different flow fields for investigating the performance of the
inverse method under various flow conditions. In case 1 and case 2,
the averaged inlet velocities uav are set as 0.05 m s�1 and 0.1 m s�1

(Re¼ 1000 and 2000), respectively. In case 3, the averaged inlet
velocity is the same as case 2, but the slope of the first peak in f(x)
(the first and the second expressions in Eq. (31)) is slightly
increased to 0.11 to produce larger adverse pressure gradient at the
first diffusion section. Fig. 3 shows the streak lines of the three
cases. With a lower inlet velocity in case 1, the adverse pressure
gradient at the first diffusion section is not large enough to provoke
a separation bubble (Fig. 3(a)), and streak lines go smoothly along
the fouling-layer/fluid interface. In case 2, however, the inlet
velocity has been increased twice as much, and there exists
a stronger adverse pressure gradient at the diffusion section which
eventually results in a small separation bubble at the tip of the
cavity (Fig. 3(b)). With a steeper slope of the first diffusion section
in case 3, the strength of the adverse pressure is further intensified,
and an even larger separation bubble is created (Fig. 3(c)). The size
of the separation bubble poses a radical impact on the temperature
distributions at its vicinity, which can be seen from the temperature
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Fig. 9. Zoomed-in view of the temperature contours near the separation bubble in case 3: (a) with the exact fouling-layer profile, and (b) with the inverse fouling-layer profile.
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contours shown in Fig. 4. At the diffusion sections, the adverse
pressure gradient dramatically slows down the boundary-layer
velocity, especially at the near-wall region, which in turn results in
poor heat convection at the tip of the cavity and gives rise to
a localized high-temperature region (Fig. 4(a)). The poor heat
convection in this region is further worsened by the existence of
a separation bubble as can be seen from Fig. 4(b) that the high-
temperature region grows in size compared with Fig. 4(a). This
high-temperature region is even more pronounced in Fig. 4(c)
where the separation bubble is larger, suggesting that the extension
of the high-temperature region seems to be in proportion to the
size of the separation bubble, especially at the space occupied by
the left-hand-side portion of the bubble. A very interesting
phenomenon observed here is that the separation bubble poses
similar effects on the temperature distribution as a thick fouling
layer does. That is, they all raise the temperature at the physical
space they occupy. This could be alarming and might affect the
predictive accuracy of the inverse method as the same outcome can
be produced by different causes; hence, the inverse algorithm
might have difficulty to distinguish the effects of temperature rising
at the measurement locations caused by either a thick fouling layer
or a separation bubble, or a combination of the two. Therefore, the
large separation bubble in case 3 presents a great challenge to the
predictive accuracy of the current inverse method.

In the inverse calculation, the measurement temperature is
assumed taken along the inner wall of the duct. Since we do not
have a real experimental set up to measure the temperature Y(xi,ym)
in Eq. (7), we assume a real profile of the fouling layer, f(x) in Eq.
(31), and substitute the exact f(x) into the direct problem to
calculate the temperatures at the locations where the thermocou-
ples are placed. The calculated temperatures in such way are taken
as the measured temperatures. The estimated profiles for the three
cases, obtained with the same initial guess of a flat profile
f0(x)¼ 0.12 m, are shown in Fig. 5. As expected, the inverse method
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returns excellent agreement with the exact profile in case 1, the
case without separation bubble in the flow field. For cases 2 and 3,
on the other hand, the agreement deteriorates slightly, especially in
case 3, only near the end of the first diffusion section where the
separation bubble is located. However, the temperature distribu-
tions at the measurement locations shown in Fig. 6 indicate that the
difference between the inverse and exact temperatures at the
measurement locations is almost non-existence for all cases. This
implies that the source term in Eq. (17a) becomes almost zero, and
there is no driving force in the inverse algorithm to further correct
the fouling-layer profiles for cases 2 and 3, indicating that the
inverse iterations in the three cases have, in fact, all converged. To
this end, it is clear that the separation bubble does undermine the
predictive accuracy of the current inverse method, and the cause
needs to be further investigated.

To understand why the separation bubble affects the accuracy of
the inverse method, we need to examine the intermediate fouling-
layer profiles during the course of the inverse iteration procedure. By
zooming in the separation bubble and its adjacent region, Fig. 7
cross-plots the fouling-layer profiles after 10 and 80 iterations and
the converged one from case 3. Since the initial-guess fouling profile
is flat, the initial flow field is smooth without separation. Then the
inverse algorithm first tried to match the measured temperatures at
the measurement locations by thickening the fouling layer wherever
the measured temperature is high. As a result, a thick fouling layer
was developed near the tip of the cavity to mimic the effect actually
caused by a separation bubble which also raises temperature at its
vicinity. With the progress of the inverse iteration, the first peak of
the fouling layer grows deeper into the fluid region, and the adverse
pressure at the first diffusion section becomes strong enough to
onset a separation bubble at the tip of the cavity. The presence of the
separation bubble further raises the temperature at the region
where the fouling-layer thickness has been over-predicted. The
combined effect overshoots the measured temperature, which in
turn signals the inverse algorithm to decrease the thickness of the
fouling layer. This progressive thickness reduction can be easily
observed by comparing the three inverse profiles plotted in Fig. 7.
Eventually, the inverse algorithm settled down on a fouling-layer
profile which is slightly thicker than the exact profile at the left-
hand-side portion of the separation bubble and which gives rise to
a smaller separation bubble. The zoomed-in plots of the streak lines
and temperature contours near the separation bubble from the exact
and inverse direct-problem solutions are given in Fig. 8 and Fig. 9,
respectively. As seen in Fig. 8(b), the inverse profile actually results in
two separation bubbles, a large one and the other very small one. The
large separation bubble is only slightly smaller than the separation
bubble created by the exact profile shown in Fig. 8(a). By further
examining the corresponding temperature contours in Fig. 9(a) and
Fig. 9(b), it is noticeable that there are some differences in temper-
ature distributions at the left-hand-side portion of the separation
bubble. However, there is almost no temperature difference at the
measurement locations along the inner wall of the duct, which has
been verified earlier by the comparison of the measurement
temperature distributions shown in Fig. 6(c). This particular case is
a vivid display of the ill-posed nature of an inverse problem. Fortu-
nately, the inverse method returns highly accurate prediction for the
rest of the fouling-layer profile, including the maximum and
minimum thickness of the fouling layer which might be the most
crucial information regarding the maintenance of the duct.

4. Conclusion

The conjugate gradient method was applied for the solution of
the inverse geometry problem to determine the unknown irregular
profile of fouling layer on the internal wall of a duct system with the
knowledge of temperature at some measurement locations. Three
cases, where the inlet velocities of the duct flow and fouling-layer
geometries are different, have been conducted to examine the
predictive accuracy of the inverse method under various flow
conditions. According to the test results, some conclusions can be
drawn as follows:

1. The current inverse method employs the Navier-Stokes equa-
tions to solve the duct flows. This implies that it could be
applied to duct systems with arbitrary fouling-layer profiles.

2. Under the circumstance of no separation bubble inside the
duct, the flow is simple, and the inverse method returns almost
identical fouling-layer profile as the exact profile.

3. However, local separation bubbles could develop if adverse
pressure gradient becomes large due to high inlet velocity or
radical geometrical variations of the fouling-layer profile; and
the duct flow becomes more complicated. The predictive
accuracy of the inverse method slightly deteriorates at the
region where a separation bubble is located.

4. The major reason contributed to the deterioration in accuracy
is rooted in the ill-posed nature of an inverse problem because
the inverse algorithm cannot distinguish the effects imposed
by a thick fouling layer or a separation bubble on the
measurement temperature, both raises temperature at their
vicinities where some of the measurement points are located.

5. Despite the fouling-layer profile at the vicinity of a separation
bubble is not well predicted, the inverse method returns
excellent prediction for the rest of the fouling-layer profile,
including the maximum and minimum thickness of the fouling
layer which are of great importance regarding the scheduling of
duct maintenance.
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